EUROPÄISCHE PATENTSCHRIFT

(45) Veröffentlichungstag und Bekanntmachung des
Hinweises auf die Patentreihung:
17.10.2001 Patentblatt 2001/42
(51) Int.Cl.: B22D 11/04, B22D 41/50
(86) Internationale Anmeldenummer:
PCT/DE98/01544
(87) Internationale Veröffentlichungsnummer:

(21) Anmeldenummer: 98934867.7
(22) Anmeldetag: 03.06.1998

(54) VERFAHREN UND VORRICHTUNG ZUM ERZEUGEN VON BRAMMEN
METHOD AND DEVICE FOR PRODUCING SLABS
PROCEDE ET DISPOSITIF POUR LA PRODUCTION DE BRAMES

(84) Benannte Vertragsstaaten:
AT BE DE DK ES FI FR GB IT NL SE
Benannte Erstreckungsstaaten:
RO

(30) Priorität: 03.06.1997 DE 19724232
(43) Veröffentlichungstag der Anmeldung:
03.05.2000 Patentblatt 2000/18

(73) Patentinhaber:
• SMS Demag AG
 40237 Düsseldorf (DE)
• Salzgitter Aktiengesellschaft
 31226 Peine (DE)

(72) Erfinder:
• URLAU, Ulrich
 D-47445 Moers (DE)
• SCHEMEIT, Hans, Jürgen
 D-40764 Langenfeld (DE)

• BÖCHER, Gerhard
 D-38226 Salzgitter (DE)
• MÜLLER, Peter
 D-38239 Salzgitter (DE)

(74) Vertreter: Meissner, Peter E., Dipl.-Ing.
Meissner & Meissner,
Patentanwaltsbüro,
Hohenzollerndamm 89
14199 Berlin (DE)

(56) Entgegenhaltungen:
WO-A-97/46344
DE-A-2 105 881
DE-A-4 142 447
DE-A-4 320 723
DE-C-19 512 208

• T. HONEYANDS ET AL.: "Flow dynamics in thin
 caster moulds" STEEL RESEARCH, Bd. 66, Nr.
 7, 1995, Seiten 287-293, XP002081747
 Düsseldorf, DE in der Anmeldung erwähnt

Printed by Jouve, 75001 PARIS (FR)
Beschreibung

[0001] Die Erfindung betrifft ein Verfahren zum Erzeugen von Brammen, mit einer Dicke $D > 100$ mm bei Gießgeschwindigkeiten $v < 3$ m/min, in einer Stranggießanlage, bei der eine Kokille aus einem Vorratsbehälter über einen Tauchausguß Schmelze zugeführt und aus der mündungseitig die einen Sumpf umgreifende Strandschale in ein Strangführungsgerüst, insbesondere einer Bogenstranggießanlage, abgezogen wird, und eine entsprechende Stranggießeinrichtung dazu.

[0002] Aus steel research 66 (1995) No. 7, Seite 287 bis 293 "Flow dynamics in thin Stab caster moulds" ist ein Versuchsaufbau bekannt, bei dem ein an einem Zwischenbehälter befestigter Tauchausguß in eine Kokille hineinragt. Die hier eingesetzte Kokille ist mit einer Dicke von etwa 60 mm das typische Maß für eine Anlage zum Erzeugen von Dünbbriememen und zeigt beim Einsatz eines einer offene Mündung aufweisenden Tauchausgusses (Fig. 10) einen zentralen Strahl, der tief in den Sumpf der Bramme hineinragt.

[0003] In einer weiteren Ausgestaltung (Figur 4) ist an der Mündung des Tauchausgusses ein Prallelement vorgesehen, die die Flüssigschmelze zu zwei Öffnungen an den Schmelzseiten des Tauchausgusses ablenkt. Die Figur 5 zeigt, daß zwei Teilstreifen entstehen, die mit hoher Energie jedes einzelnen Stromfadens zur Verbreiterung der Schmelze führen.

[0006] In Kenntnis des genannten Standes der Technik hat sich die Erfindung das Ziel gesetzt, ein Verfahren und eine entsprechende Stranggießeinrichtung zum Erzeugen von Brammen zu schaffen, bei der Konzentration von Verunreinigungen vermieden und insbesondere saugengesteuerte Schlaggüter auch auf Bogenstranggießanlagen geeignet sind.

[0008] Erfindungsgemäß tritt die der Kokille zugeführte flüssige Schmelze in breiter Front mit höherer Geschwindigkeit im Vergleich zur Strangabzugsgeschwindigkeit in den flüssigen Sumpf der Bramme ein. Bezogen auf den Querschnitt weist die zugeführte Schmelze ein Rechteckprofil auf und besitzt bereits in einer Tiefe nicht größer als 2 mm im Sumpf die gleiche Geschwindigkeit wie die Bramme.

[0011] Die den Tauchausguß verlassende Schmelze strömt in einem Breitenwinkel von $\alpha = 15$ bis 30° zur Brammenbzw. allgemein gebildet in den Sumpf ein. Bezoßen auf die Seite D der Kokillenschmelze trifft die zugeführte flüssige Schmelze auf dem Sumpf in einer Tiefe $T = 0.1$ bis $1.5 \times D$. Der hierzu eingesetzte Tauchausguß besitzt Schmalzeisenwände, die bezogen auf die Mittenachse sich konisch unter einem Winkel α von 15 bis 30° öffnen. Der freie Querschnitt A der Mündung des Gießsteils des Tauchausgusses verhält sich zum Innenquerschnitt A der Kokille wie $a : A = 1.30$ bis $1:300$. Hierbei verhält sich die lichte Weite d des Gießsteils des Tauchausgusses zur Schmelze der Kokille wie $d : D = 1.2$ bis $1:40$.

[0012] Das durch das vorgeschlagene Verfahren in der Kokille erzeugte Profil hat darüber hinaus positive Einfluß auf die Bewegung der Schmelze im Bereich des Schmelzenwegs in der Kokille und auf sein Verhalten bezüglich des Gießpulvers.

[0013] Bei dem erfindungsgemäßen Vergleichen wurde überraschend festgestellt, daß die bekannten Konzentrationsschwellen über den Brammenquerschnitt nicht auftraten und der Reinheitsgrad, bezogen auf nicht metallische Einschlüsse, im wesentlichen verbessert wurde.

Ein Beispiel der Erfindung ist in der beigefügte Zeichnung dargestellt.

[0016] Dabei zeigt die
Figur 1 den Bereich Tauchausguß/Kokille einer
Stranggießeinrichtung
Figur 2 seitliche Ansicht einer Bogenstranggießan-
tage

[0017] Die Figur 1 zeigt einen Vorratsbehälter 11, an-
dem ein Tauchausguß 12 befestigt ist. Der Tauchausguß
12 besitzt einen rohrförmigen Teil 13 und mündungsei-
tig einen spatenförmigen Teil 14 mit den Schmalseiten
16 und den Breitseiten 17. Im Übergangsbereich beider
Tauchausgußteile ist eine Drossel 15 vorgesehen.

[0018] Mündungsseitig reicht der spatenförmige Teil
14 bis zu einer Tiefe T_T in eine mit Schmelze S gefüllte
Kokille 21, die Schmalseiten 22 und Breitseiten 23 be-
sitzt.

[0019] Im oberen Teil sind die Stromfäden der
Schmelze S dargestellt mit der zugeführten Schmelze
S_z und dem Sumpf S_B. Es zeigt sich, daß die Stromfä-
den mit Blick auf die Breitseiten bis in eine Tiefe L in die
von einer Strangschale K umhüllten Schmelze S ein-
dringen. Die zugeführten Stromfäden haben eine Ge-
schwindigkeit v_K. Im Bereich der Schmalseiten 16 des
Tauchausgusses weisen die Stromfäden einen Winkel
α zur Mittenebene 1 auf und bewegen sich relativ früh
hin zu den Schmalseiten 22 der Kokille und streben im
Bereich des Pegels P der Schmelze zum Zentrum der
Kokille 21.

[0020] Im unteren Teil ist die Ansicht AA darge-
stellt mit der Kokille 21, die die Schmalseiten 22 und die
Breitseiten 23 aufweisen, die ein Rechteck bilden mit
der Breite B sowie der Dicke D und der Fläche A.

[0021] Zentrisch in den Hohlräum der Kokille 21 ist
der Tauchausguß 12 angeordnet mit den Breitseiten 17
und den Schmalseiten 16, die ein Rechteck bilden mit
der Breite b sowie der Dicke d und der Fläche a.

[0022] Die Figur 2 zeigt schematisch einen Schnitt
durch die Stranggießanlage, hier eine Bogenstrang-
gießanlage, mit dem Vorratsbehälter 11 und dem Tauch-
ausguß 12 mit dem rohrförmigen Teil 13 und dem spa-
tenförmigen Teil 14, hier die Breitseiten 17. Im Über-
gangsbereich der Tauchausgußteile 13,14 ist eine Dros-
sel 15 angeordnet.

Die Mündung des Tauchausgußteils 14 ragt in die sich
in der Kokille 21 befindliche Schmelze S bis in eine Tiefe
T_T hinein.

[0023] Von der Kokille 21 sind die Breitseitenwände
23 dargestellt, an deren mündungseitigen Ende sich
von der Bramme eine Strangschale K gebildet hat, die
die Schmelze S umhüllt bis hin zur Sumpfspitze S_z.

[0024] Der Kokille 21 nachgeordnet sind die Strang-
führungsrollen 24.

[0025] Die zugeführte Schmelze S_z dringt mit einer
Geschwindigkeit v_K in den sich in der Kokille befin-
dlichen Sumpf S_B ein und zwar in einer Tiefe T bezogen
auf die Breitseiten 23. Danach besitzt der Sumpf eine
Geschwindigkeit v_B, die der Abzugsgeschwindigkeit der
Bramme und damit auch der Strangschale K entspricht.

Patentansprüche

1. Verfahren zum Erzeugen von Grammen, mit einer
Dicke $D > 100$ mm bei Gießgeschwindigkeiten $v <
3m/min, in einer Stranggießanlage, bei der einer
Kokille (21) aus einem Vorratsbehälter (11) über ei-
nen Tauchausguß (12) Schmelze zugeführt und aus
der mündungseitig eine, einen Sumpf umgreifende
Strangschale in ein Strangführungsgerüst, ins-
besondere einer Bogenstranggießanlage, abgezo-
gen wird,

dadurch gekennzeichnet,

\[\text{d} \text{aß die zugeführte Schmelze in die Kokille (21)
mit einer Geschwindigkeit } v \text{ eintritt, die sich
zur Strangabzugsgeschwindigkeit } v_B \text{ verhält.} \]
wie $v_X : v_B = 6:1$ bis 60:1 und
daß die zugeführte Schmelze in einer Weise
geführt wird, daß sie bezogen auf den Schmelzenpegel in breiter Front, im Querschnitt ein
Rechteckprofil aufweisend, in einer Länge $L < 2$ m in den Sumpf eindringt.

2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die zugeführte flüssige Schmelze mit eiinem
als Rechteck ausgebildeten Eintrittsprofil
in den Sumpf einströmmt, wobei sich die lichte
Weite (d) des Rechtecks zur Schmalseite der
Kokille (D) wie
$$d : D = 1:3 \text{ bis } 1:40$$
und die Breite (b) des Rechtecks zur Breiteseite
der Kokille (B) wie
$$b : B = 1:7 \text{ bis } 1:1.2 \text{ verhält}$$

3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß die Schmalseiten (D) der Kokille zugeführ-
te Schmelze unter einem Winkel (α) von $\alpha = 15$ bis
30° zur Brammenabzugsrichtung in den Sumpf ein-
strömt;

4. Verfahren nach einem der vorgenannten Ansprü-
che, dadurch gekennzeichnet,
daß die über den Tauchausguß zugeführte flüssige
Schmelze in einer Tiefe (T) auf den Sumpf tritt mit
$T = 0.1 \text{ bis } 1.5 \times D$

5. Stranggießeinrichtung zum Erzeugen von nach
Verfahrensanspruch herzustellenden Brammen mit
einem Vorratsbehälter (11), aus dem die Schmelze
über einen Tauchausguß (12) in eine Kokille (21)
mit einer lichten Weite (D) mit $D > 100$ mm geführt
wird und dieser Tauchausguß (12) mindestens ein
Gießteil mit einem länglichen Querschnitt besitzt
einschließlich eines Drossellementes (15), das
den in diesen Gießteil eintretenden Hauptstrom
der Schmelze in Geschwindigkeit und Strömungsforn
verringert,
dadurch gekennzeichnet,
daß der einen länglichen Querschnitt besitzende
Gießteil in der Weise ausgestaltet ist, daß die
Schmalseitenwände (22) zur Mittenebene einen
sich in Strömungsrichtung öffnenden Winkel $\alpha = 15$
bis 30° ausweisen.

6. Stranggießeinrichtung nach Anspruch 5,
dadurch gekennzeichnet, daß der freie Quer-
schnitt (A) der Mündung des Gießteils des Tauch-

ausgüßes (12) sich zur Schmalseite (D) der Kokille
verhält wie $d : D = 1:2 \text{ bis } 1:40$.

Claims

1. Process for the production of slabs, with thickness
$D > 100$ mm at casting speeds v of < 3 m per
minute, in a continuous casting plant, in which plant
a molten mass is fed to a mould (21) from a reservoir
(11) through a submerged nozzle (12), and in which
plant a strand shell surrounding a crater is drawn
off at the outlet side into a strand guide frame,
in particular of a curved mould continuous casting ma-
chine,
characterised by the fact that
the molten mass enters the mould (21) at a
speed (v_X), which is in the ratio of $v_X : v_B = 6:1$
$1 \text{ to } 60:1$
to the strand oiltake speed (v_B), and
that the molten mass is fed in such a way that
it penetrates the crater at a length $L < 2$ m along
a broad front in relation to the melt level, its
cross-section forming a rectangular profile.

2. Process as in Claim 1,
characterised by the fact that
the liquid molten mass penetrates the crater
with an entry profile in the form of a rectangle,
the internal width (d) of the rectangle being in
the ratio of
$d : = 1 : 3 \text{ to } 1 : 40$
to the narrow face of the mould (D),
and the width (b) of the rectangle being in
the ratio $b : B = 1:7 \text{ to } 1:1.2$
to the broad face of the mould (B).

3. Process as in Claim 1 or 2,
characterised by the fact that
the molten mass fed to the narrow faces (D) of the
mould flows into the crater at an angle (α) of $\alpha = 15$
- 30° in relation to the direction of slab oiltake.

4. Process as in one of the preceding Claims,
characterised by the fact that
the liquid molten mass fed in through the sub-
merged nozzle strikes the crater at a depth (T) of
$T = 0.1 \times 1.5 \times D$

5. Continuous casting device for the production of slabs to be manufactured in accordance with pro-
cess Claim 1, having a reservoir (11) from which the
molten mass is fed, through a submerged nozzle
(12), into a mould (21) which has an internal width
(D) where $D > 100$ mm; this submerged nozzle (12)
has at least one pourer which is elongated in sec-
tion, incorporating a throttle element (15), which reduces both the speed and the flow profile of the main flow of the molten mass as it enters the pourer, characterized by the fact that the pourer with its elongated profile is shaped in such a way that the narrow sides (22) form an angle $\alpha = 15\cdot 30^\circ$ with the central axis, opening out in the direction of flow.

6. Continuous casting device as in Claim 5, characterized by the fact that the open cross-section (a) of the opening of the pourer of the submerged nozzle (12) is in the ratio of $a : A = 1:30$ to 1:300 to the internal cross-section A of the mould, the internal width (d) of the pourer of the submerged nozzle (12) being in the ratio of $d : D = 1:2$ to 1:40 to the narrow face (D) of the mould.

Revendications

1. Procédé pour produire des brames, ayant une épaisseur $D > 100$ mm pour des vitesses de coulée $v < 3$ mm/sec, dans une installation de coulée continue, dans laquelle la matière en fusion est amenée à une coquille (21) à partir d’un réservoir (11) par l’intermédiaire d’une busette de coulée à immersion (12) et de laquelle, du côté de l’embouchure, une coque de barre entourant un bassin de coulée dans une cage de guidage de barre, en particulier d’une installation de coulée de barre courbe, est tannée, caractérisé en ce que la matière en fusion amenée dans la coquille (21) entre avec une vitesse (v_1), qui, par rapport à la vitesse d’extraction de la barre (v_2), vaut $v_1 : v_2 = 6 : 1$ à 60 : 1, et en ce que la matière en fusion amenée est guidée d’une façon telle qu’elle pénètre dans le bassin de coulée relativement au niveau de la matière en fusion sur un front large, présentant un profil rectangulaire en coupe transversale, sur une longueur $L < 2$m.

2. Procédé selon la revendication 1, caractérisé en ce que la matière en fusion liquide amenée entre dans le bassin de coulée avec un profil d’entrée réalisé comme rectangle, la lar-gueur intérieure (d) du rectangle par rapport à la face étroite de la coquille (D) valant $d : D = 1 : 3$ à 1 : 40, et la largeur (b) du rectangle par rapport à la face large de la coquille (B) valent $b : B = 1 : 7$ à 1 : 1,2.

3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la matière en fusion amenée aux faces étroites (D) de la coquille entre dans le bassin de coulée sous un angle α de $\alpha = 15$ à 30°.

4. Procédé selon une des revendications précitées, caractérisé en ce que la matière en fusion liquide amenée par l’intermédiaire de la busette de coulée à immersion pénètre dans le bassin de coulée à une profondeur (T), telle que $T = 0,1$ à $1,5 \times D$.

5. Dispositif de coulée continue pour produire des brames réalisées selon la revendication de procédé 1, comportant un récipient (11), duquel la matière en fusion est guidée, par l’intermédiaire d’une busette de coulée à immersion (12), dans une coquille (21) ayant une largeur intérieure (D) avec $D > 100$ mm, et cette busette de coulée à immersion (12) possède au moins une pièce de coulée ayant une section transversale oblongue y compris un élément d’étirement (15) qui diminue le courant principal, entrant dans cette pièce de coulée, de la matière en fusion en vitesse et forme d’écoulement, caractérisé en ce que la pièce de coulée possédant une section transversale oblongue est réalisée de façon que les parois des faces étroites (22) présentent, par rapport à l’axe central, un angle $\alpha = 15$ à 30° s’ouvraient dans la direction d’écoulement.

6. Dispositif de coulée continue selon la revendication 5, caractérisé en ce que la section transversale libre (a) de l’embouchure de la pièce de coulée de la busette de coulée à immersion (12) vaut, par rapport à la section transversale interne de la coquille, $a : A = 1 : 30$ à $1 : 300$, la largeur intérieure (d) de la pièce de coulée de la busette de coulée à immersion (12) valant, par rapport à la face étroite (D) de la coquille, $d : D = 1 : 2$ à $1 : 40$.

55
Fig. 1