**Warminggewalztes Langprodukt und Verfahren zu dessen Herstellung**

Ein warminggewalztes Langprodukt weist Gewichtsanteile von
- bis zu 1.93% Mangan
- bis zu 4.0% Chrom
- bis zu 0.02% Stickstoff und
- bis zu 0.01% in oxidischen Einschlüssen gebundener Sauerstoff
- sowie weitere stählerliche Beimengungen auf, wobei
  - (Mangangehalt-1.72 Schwefelgehalt) < 1.50% und
  - Chromgehalt + (Mangangehalt - 1.72 Schwefelgehalt) > 2.6 Gew.-% ist

Es liegen folgende Gefügebestandteile vor:
- 50 bis 90% Bainit,
- bis 50% Martensit,
- bis zu 10% Ferrit und
- bis zu 10% Restaustenit.

![Graph](image-url)  
*Fig. 3*
Beschreibung

Technisches Gebiet

[0001] Die Erfindung betrifft ein warmgewalztes Langprodukt gemäss dem Oberbegriff des Anspruchs 1 sowie ein Verfahren zu dessen Herstellung.

Stand der Technik


[0003] Um eine Austenitkornvergrößerung während der notwendigen Wärmebehandlung zu vermeiden, werden die Vergütungsstähle mit mindestens 0.015% Aluminium legiert. Während der Stahlherstellung entstehen dann harte und im Zerspanungsprozess abrasive Al₅O₃-haltige Oxideinschlüsse, welche sich nachteilig auf die Werkzeugstandzeiten auswirken. Um eine gute Zerspanbarkeit zu erreichen müssen diese Einschlüsse in einem aufwendigen metallurgischen Prozess durch Zugabe von Kalzium in weniger abrasive Kalziumaluminatinschlüsse umgewandelt werden.


[0009] Stähle für die Rohrherstellung müssen sich insbesondere durch eine gute Zähigkeit und Verschleißbeständigkeit auszeichnen. Damit dies erreicht werden kann, ist ein tiefer Kohlenstoffgehalt von unter 0.13 Gew.% erforderlich. Das gewünschte hochfeste, zähe Gefüge wird über eine beschleunigte Abkühlung aus der Walzhitze erreicht. Im Temperaturbereich von 800 bis 500°C (Bereich der Umwandlung) werden Kührläufe von 10 bis 40 Ks angewendet. Das Gefüge dieser Stähle besteht dann aus allotriomorphem Ferrit und Bainit (mindestens 20%). Der tiefe Kohlenstoffgehalt garantiert bei der beschleunigten Abkühlung die Vermeidung von hohen Martensiteanteilen, was die guten Zähigkeitseigenschaften erst ermöglicht. Die Zugfestigkeit wird dadurch auf unter 1'000 MPa begrenzt.


[0011] Der in CN 1477226 beschriebene bainitisch-martensitische Stahl (C = 0.15 bis 0.34%) erreicht eine Zugfe-

[0012] In EP 0845544 (C ≤ 0,12%) wird ein mikrolegierter bainitischer Stahl beschrieben, der bei Raumtemperatur eine Zugfestigkeit von über 1’000 MPa aufweist. Um diese Eigenschaften zu erreichen, wird der Stahl nach der Walzung wieder ausgetemperiert und anschliessend mit einer Abkühlrate von 17 bis 150 K/s abgeschreckt. Diese Abkühlaten liegen deutlich über den an Luft abgekühlten Langprodukten in konventionellen Walzwerken.


[0014] Ein in der Zerspanung gut bearbeitbarer bainitisch-martensitischer Komplexphasenstahl für die Herstellung von mit Luftabkühlung konventionell warmgewalzten Langprodukten in einem Abmessungsbereich von 6,0 bis 70 mm steht heute noch nicht zur Verfügung. Das Werkstoffkonzept muss dabei so ausgelegt sein, dass die abmessungsbe dingten Unterschiede in der Abkühlrate von ca. 0,1 bis 8,0 K/s zu keinen gravierenden Schwankungen der mechanisch-technologischen Eigenschaften am Endprodukt führen.

Darstellung der Erfindung


[0016] Gelistet werden diese Aufgaben durch das im Anspruch 1 definierte warmgewalzte Langprodukt sowie das im Anspruch 6 definierte Herstellverfahren.

[0017] Die nachfolgenden Gehaltsangaben in Prozent (%) bzw. in Teilen pro Million ("parts per million, ppm") beziehen sich - sofern nicht ausdrücklich anders angegeben - auf Gewichtsanteile.

[0018] Das erfindungsgemässe warmgewalzte Langprodukt weist einen Gewichtsanteil von

| Kohlenstoff | 0,20 bis 0,25% |
| Silizium     | 0,90 bis 1,35% |
| Nickel       | bis zu 0,20%   |
| Molybdän    | 0,1 bis 0,5%   |
| Schwefel     | 0,04 bis 0,25% |
| Aluminium    | bis zu 0,01%   |
| Phosphor     | bis zu 0,035%  |
| Bor          | bis zu 0,0008% |
| Titan        | bis zu 0,02%   |
| Blei         | bis zu 0,3%    |
| Wismut       | bis zu 0,3%    |
| Mangan       | bis zu 1,93%   |
| Chrom        | bis zu 4,0%    |
| Stickstoff   | bis zu 0,02%   |
| Sauerstoff   | bis zu 0,01%   |

sowie weitere stählerliche Beimengungen auf, wobei
(Mangangehalt - 1,72 Schwefelgehalt) < 1,50% und
Chromgehalt + (Mangangehalt - 1,72 Schwefelgehalt) > 2,6 Gew. % sein soll und folgende Gefügebautandteile vorliegen:

| Bainit      | 50 bis 90% |
| Martensit   | bis 50%    |
| Ferrit      | bis 10%    |
| Restaustenit| bis 10%    |
[0019] Bei dem erfindungsgemäss hergestellten Produkt sind die Legierungskomponenten so gewählt, dass bei üblichen Abkühlraten aus der Walzhitze von 0.1 bis 8.0 K/s immer ein bainitischer-martensitisches Gefüge mit Zugfestigkeitsebene von 1'000 bis 1'400 MPa resultiert, ohne dass kostspielige Legierungselemente und/oder spezielle Einrichtungen zur beschleunigten Abkühlung aus der Walzhitze verwendet werden müssen.

[0020] Durch die untere Begrenzung des Kohlenstoffgehalts auf 0.20% wird in Kombination mit Mangan und Chrom sichergestellt, dass nur noch geringe Ferritanteile im Gefüge vorliegen. Ferritanteile über 10% beeinträchtigen sowohl das Festigkeitsniveau wie auch die Kertschlagzähigkeit des Produkts.

[0021] Durch die obere Begrenzung des Kohlenstoffs auf 0.25% wird gewährleistet, dass die Zugfestigkeit nicht über 1'400 MPa ansteigt. Höhere Festigkeitswerte verschlechtern die Bearbeitbarkeit im nachgelagerten Ziehprozess oder Zerspanungsprozess. Höhere Kohlenstoffgehalte fördern ausserdem die Bildung von Karbiden, was die Duktilität nachteilig beeinflusst.

[0022] Silizium beeinflusst die Kohlenstoffaktivität und verlangsamt die Ausscheidung von Karbiden. Die gewählte Siliziumkonzentration erlaubt eine einständige Anlassbehandlung bei 400°C, ohne dass sich die Duktilität wegen Karbidausscheidungen verschlechtert (in Anlehnung an die Beschreibung des karbid-freien Bainits in WO 96/22396). Da Silizium ein effizienter Mischkristallverfestiger im Bainit ist, muss sein Gehalt auf 1.35% begrenzt werden, um die maximal gewünschte Zugfestigkeit von 1'400 MPa nicht zu überschreiten.

[0023] Bei einem zu hohen Mangangehalt werden die Manganseligerungen ausgeprägt und das Gefüge wird sehr inhomogen. Aus diesem Grund muss der "freie", d.h. nicht in Mangansulfiden gebundene, Mangangehalt (= totaler Mangangehalt - 1.72 Schwefelgehalt) auf 1.50% begrenzt werden.

[0024] Der so festgelegte Mangangehalt reicht nicht aus, um ein bainitischer-martensitisches Gefüge nach Luftabkühlung aus der Walzhitze zu erreichen. Das Produkt muss zusätzlich noch Chrom enthalten, dass Chromgehalt (Mangangehalt - 1.72 Schwefelgehalt) > 2.6 Gew.% gelt. Zusammen mit einem Kohlenstoffgehalt von mindestens 0.20% wird so ein bainitischer-martensitisches Gefüge mit < 10% Ferrit sichergestellt.

[0025] Molybdän soll die Ausscheidung von Eisenkarbiden an den Primärmikrokrusten und einen damit verbundenen Zähigkeitsverlust verhindern. Aus Kostengründen ist der Molybdängehalt so niedrig wie notwendig zu wählen: 0.1 bis 0.5% Molydbän.

[0026] Um eine deutliche Verbesserung der Zerspanbarkeit zu erreichen, soll der Stahl mindestens 0.04%, vorzugsweise 0.12 bis 0.17 % Schwefel enthalten. Der Schwefel verhindert sich mit Mangan zu Mangansulfidausscheidungen, so sowohl den Spanbruch als auch die Werkzeugstandzeit verbessern. Da diese Ausscheidungen gleichzeitig auch die Querzähigkeit des warmgewalzten Langprodukts vermindern, ist die Schwefelzusatz auf 0.25% zu begrenzen.

[0027] Dem erfindungsgemäss hergestellten Produkt wurde kein Aluminium zugegeben. Um die Bildung von harten, abrasiven Oxideinschlüssen vom Typ Korund zu vermeiden, soll der Aluminiumgehalt auf 0.01% begrenzt sein. In Kombination mit dem hohen Siliziumgehalt und einer geringen Kalziumzusatz am Ende der metallurgischen Behandlung sollen gemäss Anspruch 2 Oxideinschlüsse mit einem Al2O3-Gehalt von < 50% eingestellt werden. Vorzugsweise wird die metallurgische Behandlung so vorgenommen, dass weiche, glasartige Silikateinschlüsse mit folgenden relativen Gewichtsanteilen entstehen: 20 bis 50% CaO, 35 bis 65% SiO2 und weniger als 25% Al2O3. Die Werkzeugstandzeit der in der Zerspanung eingesetzten Werkzeuge wird dann deutlich verlängert.

[0028] Die gute Zerspanbarkeit des erfindungsgemäss hergestellten warmgewalzten Langprodukts kann gemäss Anspruch 3 bzw. 4 weiter durch die Zugabe von 0.05 bis 0.3% Blei bzw. 0.05 bis 0.3% Wismut verbessert werden.


Wege zur Ausführung der Erfindung

[0031] Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen näher beschrieben, dabei
zeigen:

Fig. 1 Gefügebilder nach 200-facher Vergrößerung (Atzmittel: HNO₃ 2%-ig), für (a) 22 mm Stabstahl, (b) 52 mm Stabstahl;

5 Fig. 2 eine schematische Darstellung der Entnahme der B8x40 mm- Zugproben;

Fig. 3 dem Verlauf der Vickers Härte über den Querschnitt eines 22 mm und eines 52 mm Stabs (von der Oberfläche bis zum Kern).

[0032] Im Rahmen eines Ausführungsbeispiels wurde eine Stahlschmelze vergossen und anschliessend zu Stabstahl in verschiedenen Abmessungen verarbeitet. Die Herstellung der Stahlschmelzen erfolgte nach dem Elektrostahl-Verfahren mit einer sekundärmetallurgischen Behandlung an einem Pfannenstand und anschliessendem Vergiessen zu 150x150 mm²-Knüppeln in einer kontinuierlichen Stranggussanlage. Die Knüppel wurden danach in einem Hubbalkenofen auf 1'150 bis 1'200°C wieder erwärmt und anschliessend zu Stabstahl in den Abmessungen 22 (Kühlrate ist ca. 1.5 K/s) und 52 mm (Kühlrate ist ca. 0.4 K/s) gewalzt. Die Abkühlung der Stäbe nach der Walzung erfolgte an Luft.

Der Stahl bestand aus

0.22% Kohlenstoff
0.94% Silizium
0.07% Nickel
0.14% Molybdän
0.15% Schwefel
0.003% Aluminium
0.012% Phosphor
<0.001% Bor
0.011 % Titan
<0.003% Blei
<0.003% Wismut
0.013% Stickstoff
1.60% Mangan
1.34% Mangan · 1.72 Schwefel
1.54% Chrom
2.88% Chrom + (Mangan · 1.72 Schwefel)

sowie weiterer erschmelzungsbedingter Verunreinigungen.

[0033] Der hohe Schwefelgehalt von 0.15% gewährleistet den guten Spanbruch und verbessert die Werkzeugstandzeit. Der tiefe Aluminiumgehalt unterdrückt die Bildung harter, abrissiger tonerdehaltige Oxideschlüsse.

[0034] Die metallographische Gefügebilder bei 200-facher Vergrößerung sind in der Fig. 1 gezeigt. Bei dem Gefüge handelt es sich um ein sehr feines Mischgefüge. Die Bainit- und Martensiteanteile konnten bisher nicht sicher quantifiziert werden. Die Bilder sowie das erhaltene Festigkeitsniveau zeigen jedoch, dass das Gefüge primär (>50%) aus Bainit besteht. Das Gefüge des 52 mm Stabs ist aufgrund des geringen Abkühlrate aus der Walzhütte etwas gröber als das Gefüge beim 22 mm Stab. In der Umgebung von Mangansulfiden (die als Keimstellen für die Ferritbildung dienen können) sind vereinzelt Ferritkörner zu erkennen. Der Ferritanteil ist äusserst gering (<<10%). Die Bestimmung der Restaustenitmenge im Röntgendiffraktometer ergab 5.1 ± 0.45% für den 22 mm Stab und 4.4 ± 1.34% für den 52 mm Stab.

[0035] Da die Proben für die Zugversuche unmittelbar nach der Wärnumformung genommen wurden, wurden sie zur Beschleunigung der natürlichen Alterung vor dem Zugversuch eine Stunde bei 300°C unter Schutzgas gelagert. Trotz der unterschiedlichen Abkühlbedingungen aus der Walzhütte bei 22 und 53 mm Stabstahl liegen die Festigkeitswerte für den erfindungsgemäss hergestellten Stahl innerhalb einer Spanne von 100 MPa (Tabelle 1).

<table>
<thead>
<tr>
<th>Tabelle 1: Festigkeitswerte</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 mm</td>
</tr>
<tr>
<td>Rp0.2</td>
</tr>
<tr>
<td>Rm</td>
</tr>
</tbody>
</table>
(fortgesetzt)

<table>
<thead>
<tr>
<th>22 mm</th>
<th>52 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>14.2%</td>
</tr>
</tbody>
</table>

[0036] Beim 52 mm Stabstahl wurden an verschiedenen Stellen Zugproben (siehe Fig. 2) entnommen, um die Gleichmässigkeit der Eigenschaften nachweisen zu können. Die Ergebnisse sind aus der nachfolgenden Tabelle 2 zu entnehmen.

<table>
<thead>
<tr>
<th>Abstand von Kern</th>
<th>5 mm</th>
<th>13 mm</th>
<th>20 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rp0.2</td>
<td>777</td>
<td>842</td>
<td>862</td>
</tr>
<tr>
<td>Rm</td>
<td>1029</td>
<td>1064</td>
<td>1071</td>
</tr>
<tr>
<td>A5</td>
<td>10.4%</td>
<td>11.8%</td>
<td>12.9%</td>
</tr>
</tbody>
</table>

[0037] Die hohe Gleichmässigkeit der Härte über den Stabquerschnitt wurde für einen 22 mm und einen 52 mm Stabstahl an nicht-ausgelegerten Proben mittels HV1-Messungen bestätigt (Fig. 3). Aufgrund der schnelleren Abkühlrate ist die Härte bzw. die Festigkeit beim 22 mm etwas höher als beim 52 mm Stabstahl.

[0038] Eine einstündige Auslagerung der 52 mm Stabstahlproben bei 300, 400 und 500°C ergab keine wesentliche Veränderung der mechanischen Eigenschaften (hier an einer bei RV2 entnommenen B8x40 mm- Probe ermittelt):

<table>
<thead>
<tr>
<th>Auslagerung 1 Stunde bei</th>
<th>300°C</th>
<th>400°C</th>
<th>500°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rp0.2</td>
<td>842</td>
<td>878</td>
<td>815</td>
</tr>
<tr>
<td>Rm</td>
<td>1064</td>
<td>1068</td>
<td>1124</td>
</tr>
<tr>
<td>A5</td>
<td>11.8%</td>
<td>13.4%</td>
<td>12.0%</td>
</tr>
</tbody>
</table>


Patentansprüche

1. Wiegewalztes Langprodukt mit einem Gewichtsanteil von

0.20 bis 0.25% Kohlenstoff,
0.90 bis 1.35% Silizium,
bei zu 0.20% Nickel,
bei zu 0.5% Molybdän,
0.04 bis 0.25% Schwefel,
bei zu 0.01% Aluminium,
bei zu 0.035% Phosphor,
bei zu 0.0008% Bor,
bei zu 0.02% Titan,
bei zu 0.3% Blei,
bei zu 0.3% Wismut,
bei zu 1.93% Mangan
bei zu 4.0% Chrom
bei zu 0.02% Stickstoff und
bei zu 0.01% in oxidischen Einschlüssen gebundener Sauerstoff
sowie weitere stahlähnliche Beimengungen, wobei
(Mangangehalt - 1.72 Schwefelgehalt) < 1.50 % und
Chromgehalt + (Mangangehalt - 1.72 Schwefelgehalt) > 2.6 Gew.-% ist,
mit folgenden Gefügebestandteilen:

5 50 bis 90% Bainit;
bis 50%Martensit;
bis zu 10% Ferrit und
bis zu 10% Restaustenit.

10 2. Warmgewalztes Langprodukt nach Anspruch 1, **daher gekennzeichnet, dass** es oxidische Einschlüsse enthält
mit weniger als 50 Gew.-% Al_2O_3; vorzugsweise liegen oxidische Einschlüsse mit folgenden relativen Gewichtsanteilen vor: 20 bis 50% CaO, 35 bis 65% SiO_2 und weniger als 25% Al_2O_3.

15 3. Warmgewalztes Langprodukt nach Anspruch 1 oder 2, mit einem Bleigehalt von 0.05 bis 0.3 Gew.-%.

4. Warmgewalztes Langprodukt nach einem der Ansprüche 1 bis 3, mit einem Wismutgehalt von 0.05 bis 0.3 Gew.-%.

5. Warmgewalztes Langprodukt nach einem der Ansprüche 1 bis 4, mit einer Zugfestigkeit Rm von 1’000 bis 1’400 MPa.

20 6. Verwendung eines Langprodukts nach einem der Ansprüche 1 bis 5 für die spanabhebende Bearbeitung.

7. Verfahren zur Herstellung eines warmgewalzten Langprodukts nach einem der Ansprüche 1 bis 5, wobei:
   - die mittlere Austenitkorngröße nach dem letzten Warmumformungsschritt kleiner ist wie 50 μm;
   - die Abkühlung aus der Umformhitze an ruhender oder bewegter Luft so gestaltet, dass der Temperaturbereich
     zwischen 800 und 500°C mit einer Kühlrate von 0.1 bis 8.0 K/s durchlaufen wird.

8. Verfahren zur Herstellung eines warmgewalzten Langprodukts nach Anspruch 7, wobei die Alterung des Stahlgefüges nach dem Warmwalzen über eine anschliessende, zusätzliche Wärmebehandlung für 0.5 bis 2 Stunden bei
   300 bis 500°C beschleunigt wird.
Fig. 1a

Fig. 1b
Fig. 2

Fig. 3
## EINSCHLÄGIGE DOKUMENTE

<table>
<thead>
<tr>
<th>Kategorie</th>
<th>Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile</th>
<th>Betrifft Anspruch</th>
<th>KLASSIFIKATION DER ANMELDUNG (IPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-----</td>
<td></td>
<td>C22C38/04</td>
</tr>
</tbody>
</table>

Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt.

<table>
<thead>
<tr>
<th>Recherchebericht</th>
<th>Abschlussdatum der Recherche</th>
<th>Proffor</th>
</tr>
</thead>
<tbody>
<tr>
<td>München</td>
<td>28. Oktober 2008</td>
<td>Badcock, Gordon</td>
</tr>
</tbody>
</table>

**KATEGORIE DER GENANNTEN DOKUMENTE**

- **X:** von besonderer Bedeutung, allein betroffen
- **Y:** von besonderer Bedeutung, in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
- **A:** technisch-selber Hintergrund
- **O:** nicht schriftliche Offenbarung
- **P:** Zwischenliteratur

**KLASSIFIKATION DER ANMELDUNG (IPC)**

- **T:** der Grund für die genannten Theorien oder Grundsätze
- **E:** äußeres Patent, das jedoch erst am oder nach dem Anmeldetermin veröffentlicht worden ist
- **D:** in Anmeldungen angeführtes Dokument
- **I:** aus anderen Gründen angeführtes Dokument

- **S:** Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument
### ANHANG ZUM EUROPÄISCHEN RECHERCHENBERICHT ÜBER DIE EUROPÄISCHE PATENTANMELDUNG NR. EP 08 00 4335


#### 28-10-2008

<table>
<thead>
<tr>
<th>Im Recherchenbericht angeführtes Patentdokument</th>
<th>Datum der Veröffentlichung</th>
<th>Mitglieder der Patentfamilie</th>
<th>Datum der Veröffentlichung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FR 2830261 A1</td>
<td>04-04-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003183770 A</td>
<td>03-07-2003</td>
</tr>
<tr>
<td>US 5922145 A</td>
<td>13-07-1999</td>
<td>KEINE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003290187 A1</td>
<td>18-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0315694 A</td>
<td>20-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2506347 A1</td>
<td>10-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1714161 A</td>
<td>28-12-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1563103 A1</td>
<td>17-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2300536 T3</td>
<td>16-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2847271 A1</td>
<td>21-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004048618 A</td>
<td>10-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006506526 T</td>
<td>23-02-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 20050083912 A</td>
<td>26-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2326180 C2</td>
<td>10-06-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 81134 C2</td>
<td>12-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2008253921 A1</td>
<td>16-10-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200504151 A</td>
<td>26-07-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1205036 A</td>
<td>13-01-1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69718784 D1</td>
<td>06-03-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69718784 T2</td>
<td>18-12-2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 9823784 A1</td>
<td>04-06-1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 2003294049 A1</td>
<td>18-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0315696 A</td>
<td>20-09-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2506353 A1</td>
<td>10-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1745189 A</td>
<td>08-03-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60315182 T2</td>
<td>10-04-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 1563110 T3</td>
<td>01-10-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1563110 A1</td>
<td>17-08-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2291728 T3</td>
<td>01-03-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2847273 A1</td>
<td>21-05-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2004048631 A1</td>
<td>10-06-2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2006506530 T</td>
<td>23-02-2006</td>
</tr>
<tr>
<td></td>
<td></td>
<td>KR 2005075053 A</td>
<td>19-07-2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2321668 C2</td>
<td>10-04-2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UA 80010 C2</td>
<td>10-08-2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 200504149 A</td>
<td>22-11-2005</td>
</tr>
</tbody>
</table>

Für nähere Einzelheiten zu diesem Anhang siehe Amtsblatt des Europäischen Patentamts, Nr.12/2022
IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE

Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

In der Beschreibung aufgeführte Patentdokumente

- WO 9622936 A [0010] [0022]
- CN 1477226 [0011]
- EP 0845544 A [0012]
- DE 102005052069 [0013]